Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 189(3): 987-1006, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31161380

RESUMEN

This study investigated methane production in an anaerobic sequencing batch biofilm reactor (AnSBBR) by co-digesting sugarcane vinasse and cheese whey. The assessment was based on the influence of feed strategy, interaction between cycle time and influent concentration, applied volumetric organic load (OLRA), and temperature over system stability and performance. The system showed flexibility with regard to the feed strategy, but the reduction of cycle time and influent concentration, at the same OLRA, resulted in lower methane productivity. Increasing organic load, up to the value of 15.27 gCOD L-1 day-1, favored the process, increasing methane yield and productivity. Temperature reduction from 30 to 25 °C resulted in worse performance, although increasing it to 35 °C provided similar results to 30 °C. The best results were achieved at an OLRA of 15.27 gCOD L-1 day-1, cycle time of 8 h, fed-batch operation, and temperature of 30 °C. The system achieved soluble COD removal efficiency of 89%, methane productivity of 208.5 molCH4 m-3 day-1 and yield of 15.76 mmolCH4 gCOD-1. The kinetic model fit indicated methanogenesis preference for the hydrogenotrophic route. At the industrial scale estimative, considering a scenario with a sugarcane ethanol plant with ethanol production of 150,896 m3 year-1, it was estimated energy production of 25,544 MWh month-1.


Asunto(s)
Biotecnología/métodos , Queso , Metano/biosíntesis , Saccharum/metabolismo , Suero Lácteo/metabolismo , Anaerobiosis , Reactores Biológicos/microbiología , Cinética , Temperatura , Aguas Residuales/química
2.
Appl Biochem Biotechnol ; 188(3): 720-740, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30680702

RESUMEN

Vinasse, from sugar and ethanol production, stands out as one of the most problematic agroindustry wastes due to its high chemical oxygen demand, large production volume, and recalcitrant compounds. Therefore, the viability of using glycerin as a co-substrate in vinasse anaerobic digestion was tested, to increase process efficiency and biogas productivity. The effect of feeding strategy, influent concentration, cycle length, and temperature were assessed to optimize methane production. Glycerin (1.53% v/v) proved to be a good co-substrate since it increased the overall methane production in co-digestion assays. CH4 productivity enhanced exponentially as influent concentration increased, but when temperature was increased to 35 °C, biogas production was impaired. The highest methane productivity and yield were achieved using fed-batch mode, at 30 °C and at an organic loading rate of 10.1 kg COD m-3 day-1: 139.32 mol CH4 m-3 day-1, 13.86 mol CH4 kg CODapplied, and 15.30 mol CH4 kg CODremoved. Methane was predominantly produced through the hydrogenotrophic route. In order to treat all the vinasse produced by a mid-size sugar and ethanol plant, nine reactors with 7263.4 m3 each would be needed. The energy generated by burning the biogas in boilers would reach approximately 92,000 MW h per season and could save up to US$ 240,000.00 per month in diesel oil demand.


Asunto(s)
Glicerol/metabolismo , Residuos Industriales , Saccharum/metabolismo , Anaerobiosis , Biopelículas , Análisis de la Demanda Biológica de Oxígeno , Calor , Cinética , Metano/biosíntesis
3.
Appl Biochem Biotechnol ; 187(1): 28-46, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29882192

RESUMEN

The most common approach to deal with vinasse (sugarcane stillage) is fertigation, but this technique compromises soil structure and surrounding water bodies. A possible solution is to transport vinasse to local cheese whey producers and perform the co-digestion of these wastewaters together, reducing their organic load and generating bioenergy. Therefore, this study investigated the application of an AnSBBR (anaerobic sequencing batch biofilm reactor) operated in batch and fed-batch mode, co-digesting vinasse and whey at 30 °C. The effect of influent composition and feeding strategy was assessed. In all conditions, the system achieved high organic matter removal (approximately 83%). Increasing the percentage of vinasse from 0 to 100% in the influent resulted in a decrease in methane productivity (76.3 to 51.1 molCH4 m-3 day-1) and yield (12.7 to 9.1 molCH4 kgCOD-1), but fed-batch mode operation improved reactor performance (73.0 molCH4 m-3 day-1 and 11.5 molCH4 kgCOD-1). From the kinetic metabolic model, it was possible to infer that, at the best condition, methane is produced in a similar way from the acetoclastic and hydrogenotrophic routes. A scheme of four parallel reactors with a volume of 16,950 m3 each was proposed in the scale-up estimation, with an energy recovery estimated in 28,745 MWh per month.


Asunto(s)
Reactores Biológicos , Metano/metabolismo , Modelos Biológicos , Saccharum/química , Aguas Residuales/microbiología
4.
Appl Biochem Biotechnol ; 170(1): 105-18, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475319

RESUMEN

A mechanically stirred anaerobic sequencing batch reactor (5 L, 30 °C) containing granular biomass was used to treat the effluent of an industrial biodiesel production process with the purpose to produce methane. Process stability and efficiency were analyzed as a function of applied volumetric organic load (AVOL of 1,000 to 3,000 mgCOD/L), reactor feed time, and cycle length (8-h cycles with 10-min or 4-h feeding and 4-h cycles with 10-min or 2-h feeding). Batch operations (B) with 1,000 to 3,000 mgCOD/L involved 10-min feeding/discharge: (1) 1.0-L influent with 4-h cycle and (2) 2.0-L influent with 8-h cycle. Fed-batch operations (FB) with 1,000 to 3,000 mgCOD/L involved 10-min discharge and the following feeding: (1) 1.0-L influent in 2 h with 4-h cycle and (2) 2.0-L influent in 4 h with 8-h cycle. At 1,000 mgCOD/L (AVOL of 18 to 1.29 gCOD/Lday), kinetic parameter values were 1.03 and 0.92 h(-1) at conditions B-1000-4 h and FB-1000-8/4 h, respectively. At both conditions, removal efficiency was 88 %, and cycle length could be reduced to 3 h (B-1000-4 h) and 5 h (FB-1000-8/4 h). At 2,000 mgCOD/L (AVOL of 2.38 to 2.52 gCOD/Lday), kinetic parameter values were 1.08 and 0.99 h(-1) at conditions B-2000-4/2 h and FB-2000-8/4 h, respectively, and removal efficiencies were 83 and 81 %. Cycle length could be reduced to 3 h (B-2000-4/2 h) and 6 h (FB-2000-8/4 h). At 3,000 mgCOD/L (AVOL of 3.71 to 3.89 gCOD/Lday), conditions allowing stable operation were B-3000-4 h, FB-3000-8/4 h, and FB-3000-4/2 h. Stability could not be obtained at condition B-3000-8 h, and the best results were obtained at condition FB-3000-8/4 h. Specific methane production ranged from 41.1 to 93.7 NmLCH(4)/gCOD, demonstrating reactor application potential and operation flexibility.


Asunto(s)
Metano/biosíntesis , Aguas Residuales/química , Anaerobiosis , Biocombustibles , Biomasa , Reactores Biológicos , Cinética , Eliminación de Residuos Líquidos
5.
Appl Biochem Biotechnol ; 166(8): 2007-29, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22373928

RESUMEN

The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L(-1) day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L(-1) day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L(-1) day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L(-1) day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.


Asunto(s)
Biopelículas , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Residuos Industriales , Metano/biosíntesis , Anaerobiosis , Glicerol/metabolismo , Metano/química , Factores de Tiempo , Volatilización
6.
J Environ Manage ; 92(7): 1714-23, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21371806

RESUMEN

The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 °C using different COD/[SO(4)(2-)] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 °C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 °C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction.


Asunto(s)
Bacterias Anaerobias/metabolismo , Reactores Biológicos , Sulfatos/metabolismo , Temperatura , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Poliuretanos
7.
Appl Biochem Biotechnol ; 162(8): 2365-80, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20556540

RESUMEN

The effect of organic matter and fill time on anaerobic sequencing batch reactor (5 L, 30 °C, 8-h cycles, 50 rpm) efficiency has been analyzed. Organic matter was increased by the influent concentration. Fill times investigated were in the batch mode and fed-batch followed by batch. In the batch mode organic matter removal were 93%, 81%, and 66% for influent concentration of 500, 1,000, and 2,000 mgCOD/L (0.6, 1.29, and 2.44 g COD/L.d), respectively. At 3,000 mgCOD/L (3.82 gCOD/L x d) operational stability could not be achieved. Removal efficiency was improved by increasing the fill time, and was 85% for the 1,000 mgCOD/L condition and fill times of 2 and 4 h, and 80 and 77% for the 2,000 mgCOD/L condition and fill times of 2 and 4 h, respectively. Hence, gradual feeding seemed to improve and to smooth the profiles of organic matter and volatile acids along the cycle with 78 to 96 NmLCH4/gCOD.


Asunto(s)
Biocombustibles , Reactores Biológicos , Metano/biosíntesis , Anaerobiosis , Metano/metabolismo , Factores de Tiempo
8.
Appl Biochem Biotechnol ; 162(6): 1708-24, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20376574

RESUMEN

An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.


Asunto(s)
Metano/análisis , Compuestos Orgánicos/análisis , Poliuretanos/análisis , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/instrumentación , Anaerobiosis , Biomasa , Reactores Biológicos , Residuos Industriales/análisis , Oxígeno/análisis , Eliminación de Residuos Líquidos/métodos
9.
J Environ Manage ; 91(8): 1756-65, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20413213

RESUMEN

The objective of this work was to analyze the effect of the interaction between feeding strategy and COD/sulfate ratio on the removal efficiency of sulfate and organic matter from a synthetic wastewater. An anaerobic sequencing batch reactor with recirculation of the liquid phase and containing immobilized biomass on polyurethane foam (AnSBBR) was used. The AnSBBR with a total volume of 3.7 L, treated 2.0 L synthetic wastewater in 8-h cycles at 30+/-1 degrees C and was inoculated with anaerobic biomass from a UASB. Two feeding strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8L (containing only the carbon source) in 240 min. The COD/sulfate ratios assessed were 1 and 3. Based on these values and on the concentrations of organic matter (0.5-11.25 gCOD/L) and sulfate (0.5 and 2.5 gSO(4)(2-)/L), the sulfate and organic matter loading rates applied equaled 1.5 and 4.5 gSO(4)(2-)/Ld for sulfate and 1.5, 4.5 and 13.5 gCOD/Ld for organic matter. After stabilization of the system time profiles were run of monitored parameters (COD, sulfate, sulfide and sulfite). In general, the reactor showed to be robust for use in the anaerobic treatment of wastewaters containing sulfate. Gradual feeding (strategy b) of the carbon source favored sulfate reduction, resulting in sulfate removal efficiencies of 84-98% and organic matter removal efficiencies of 48-95%. The best results were observed under COD/sulfate ratio equal to 1 (loading rates of 1.5 and 4.5 gSO(4)(2-)/Ld for sulfate, and 1.5 and 4.5 gCOD/Ld for organic matter). When COD/sulfate ratio was 3 (loading rates of 1.5 and 4.5 gSO(4)(2-)/Ld for sulfate, and 4.5 and 13.5 gCOD/Ld for organic matter) the effect of feed mode became less significant. These results show that the strategy batch followed by fed-batch is more advantageous for COD/sulfate ratios near the stoichiometric value (0.67) and higher organic matter and sulfate concentrations.


Asunto(s)
Reactores Biológicos/microbiología , Sulfatos/metabolismo , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biodegradación Ambiental , Biomasa , Carbono , Residuos Industriales , Poliuretanos , Aguas del Alcantarillado , Sulfatos/aislamiento & purificación , Eliminación de Residuos Líquidos/instrumentación
10.
Bioresour Technol ; 101(17): 6642-50, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20392632

RESUMEN

The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg CODL(-1) (3 g CODL(-1)d(-1)) in 8h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-)] ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-)L(-1)d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal.


Asunto(s)
Reactores Biológicos , Compuestos Orgánicos/aislamiento & purificación , Sulfatos/análisis , Anaerobiosis , Biomasa , Sulfatos/aislamiento & purificación
11.
Appl Biochem Biotechnol ; 159(1): 95-109, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19277484

RESUMEN

A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L(-1)), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO(4)(2-)] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L(-1) and sulfate concentrations of 373, 746, and 1,493 mg SO(4)(2-) L(-1) in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30 +/- 1 degrees C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO(4)(2-)] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO(4)(2-)] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO(4)(2-)] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Bacterias Anaerobias/metabolismo , Reactores Biológicos/microbiología , Técnicas de Cultivo de Célula/métodos , Compuestos Orgánicos/metabolismo , Oxígeno/metabolismo , Sulfatos/metabolismo , Biodegradación Ambiental , Compuestos Orgánicos/aislamiento & purificación , Sulfatos/aislamiento & purificación
12.
J Environ Manage ; 90(3): 1357-64, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18814952

RESUMEN

The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees -inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO3/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees -inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees -inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3)m3).


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Cinética , Purificación del Agua
13.
Appl Biochem Biotechnol ; 157(2): 140-58, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18931955

RESUMEN

The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l(-1) day(-1)) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 +/- 1 degrees C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l(-1) day(-1), change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l(-1) day(-1), reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l(-1) day(-1) the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l(-1) day(-1) caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.


Asunto(s)
Reactores Biológicos , Productos Lácteos , Residuos Industriales , Compuestos Orgánicos/análisis , Anaerobiosis , Biodegradación Ambiental , Ácidos Grasos Volátiles/análisis , Filtración , Metano/análisis , Factores de Tiempo , Eliminación de Residuos Líquidos
14.
Appl Biochem Biotechnol ; 143(3): 257-75, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18057453

RESUMEN

The main objective of this work was to investigate the effect of volumetric loading rate (VLR), shock load, and alkalinity supplementation on the efficiency and stability of an Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) containing polyurethane foam cubes. Mixing in the reactor, which was kept at 30 +/- 1 degrees C, occurred by recirculating the liquid phase. The reactor treated 2.5 l cheese whey in 8-h cycles, at concentrations of 1, 2, and 4 g COD l-1, which corresponded to VLRs of 3, 6, and 12 g COD l-1 day-1, respectively. Application of single-cycle shock loads of 6, 12, and 24 g COD l-1 day-1 did not impair reactor performance. In addition, for VLRs of 3, 6, and 12 g COD l-1 day-1, alkalinity supplementation to the influent, at the end of each assay, could be reduced to 75, 50, and 50%, respectively, in relation to supplementation at the beginning of the assay. During reactor operation a viscous polymer-like material was formed between the polyurethane foam cubes, which increased at higher VLR. Finally, addition of salts to the influent improved reactor efficiency.


Asunto(s)
Reactores Biológicos , Queso , Residuos Industriales , Proteínas de la Leche/química , Eliminación de Residuos Líquidos/métodos , Álcalis , Anaerobiosis , Biopelículas , Biomasa , Industria de Alimentos , Concentración de Iones de Hidrógeno , Cinética , Metano/química , Proteína de Suero de Leche
15.
Interciencia ; 32(9): 610-614, sept. 2007. tab, graf
Artículo en Inglés | LILACS | ID: lil-502733

RESUMEN

La alcalinidad bicarbonática tiene papel fundamental en la estabilidad de reactores biológicos aplicados al tratamiento de aguas residuales, principalmente en sistemas anaerobios. Como algunas aguas residuales pueden sufrir severa acidificación, en algunos casos es necesaria la adición de una fuente externa de alcalinidad para que el proceso sea conducido de forma estable. En ese contexto, se evaluó el efecto de la adición de bicarbonato de sodio sobre la determinación de la concentración de sólidos. La metodología consistió en la evaluación de las concentraciones de sólidos (sólidos totales-ST, sólidos volátiles totales-SVT y sólidos fijos totales-SFT) en muestras conteniendo suero de queso y ácidos volátiles (para simulación de efluentes de reactores anaerobios). Los valores de ST, SVT y SFT fueran fuertemente influenciados, principalmente debido al aumento de los SFT. Ese efecto fue cuantificado relacionándose los valores experimentales con los teóricos, determinados por las reacciones estequiométricas de la descomposición del bicarbonato de sodio y otros compuestos formados (acetato de sodio y propionato de sodio) con el aumento de la temperatura. Así, como uno de los principales parámetros de evaluación de sistemas de tratamiento de aguas residuales es la remoción de sólidos presentes en el medio, la concentración de sólidos puede ser evaluada de forma más adecuada teniendo en cuenta la determinación de los sólidos fijos debido a las sales inorgánicas. Esa metodología es considerada adecuada cuando se adiciona grande cantidad de alcalinizada a la agua residual


Asunto(s)
/análisis , Tratamiento Anaerobio/análisis , Aguas Residuales , Biología , Brasil
16.
J Environ Manage ; 85(4): 927-35, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17184897

RESUMEN

An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Compuestos Orgánicos/metabolismo , Bacterias Anaerobias/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Poliuretanos , Factores de Tiempo
17.
J Environ Manage ; 79(2): 198-206, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16202504

RESUMEN

An assessment was made of cheese whey treatment in a mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass. The effect of increasing organic load and decreasing influent alkalinity supplementation (as sodium bicarbonate) was analyzed. The reactor operated on 8-h cycles with influent COD concentrations of 500, 1000, 2000 and 4000 mg/L, corresponding to volumetric organic loads of 0.6 to 4.8 mgCOD/L.d. Organic COD removal efficiencies were always above 90% for filtered samples. These results were obtained with an optimized alkalinity supplementation of 50% (ratio between mass of NaHCO3 added and mass of influent mgNaHCO3/mgCOD) in the assays with 500 and 1000 mgCOD/L and of 25% in the assays with 2000 and 4000 mgCOD/L. Initial alkalinity supplementation was equal to the mass of influent COD (100%). The system showed formation of viscous polymer-like substances. These were probably of microbiological origin occurring mainly at influent CODs of 2000 and 4000 mg/L and caused some biomass flotation. This could, however be controlled to enable efficient and stable reactor operation.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biomasa , Proteínas de la Leche/metabolismo , Bicarbonato de Sodio/metabolismo , Eliminación de Residuos Líquidos/métodos , Animales , Reactores Biológicos , Bovinos , Queso , Industria Lechera/métodos , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Residuos Industriales , Oxígeno/análisis , Oxígeno/metabolismo , Bicarbonato de Sodio/farmacología , Proteína de Suero de Leche
18.
Appl Biochem Biotechnol ; 126(3): 189-203, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16148364

RESUMEN

The stability and efficiency of an anaerobic reactor containing biomass immobilized on polyurethane foam were assessed. The reactor with mechanical stirring of 500 rpm and maintained at 30+/-1 degrees C treated synthetic wastewater with a concentration of approx 500 mg of chemical oxygen demand/L and was fed with different influent volumes and cycle times maintaining organic load. Operation was in batch mode with renewal of only part of the volume of wastewater to be treated; that is reactor discharge was not complete, but partial. The main operational characteristic investigated was the ratio of the volume of wastewater fed per cycle (VA) to the volume of wastewater in the reactor (VA) maintaining the same volumetric organic load. This way, operating flexibility could be verified in relation to the volume of treated wastewater at each cycle and the cycle time for the same organic load. The results indicated that the reactor was able to operate with different VA/Vu ratios with no significant loss in performance, thus allowing increased operational flexibility. For conditions in which VA was >or=50% of VA, removal efficiencies of filtered and nonfiltered organic matter were about 84 and 79%, respectively, whereas at conditions of higher initial influent dilution, these efficiencies were slightly lower, about 80 and 74%, respectively. At higher initial influent dilutions, it became difficult to maintain a constant reactor medium volume, owing to a high formation rate of viscous polymer-like material, likely of microbiologic origin.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biopelículas , Reactores Biológicos , Purificación del Agua , Biomasa , Factores de Tiempo , Purificación del Agua/instrumentación , Purificación del Agua/métodos
19.
J Environ Manage ; 72(4): 241-7, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15294356

RESUMEN

The effect of organic loading on the performance of a mechanically stirred anaerobic sequencing biofilm batch reactor (ASBBR) has been investigated, by varying influent concentration and cycle period. For microbial immobilization 1-cm polyurethane foam cubes were used. An agitation rate of 500 rpm and temperature of 30+/-2 degrees C were employed. Organic loading rates (OLR) of 1.5-6.0gCODl(-1)d(-1) were applied to the 6.3-l reactor treating 2.0 l synthetic wastewater in 8 and 12-h batches and at concentrations of 500-2000mgCODl(-1), making it possible to analyze the effect of these two operation variables for the same organic loading range. Microbial immobilization on inert support maintained approximately 60 gTVS in the reactor. Filtered sample organic COD removal efficiencies ranged from 73 to 88% for organic loading up to 5.4gCODl(-1)d(-1). For higher organic loading (influent concentration of 2000mgCODl(-1) and 8-h cycle) the system presented total volatile acids accumulation, which reduced organics removal efficiency down to 55%. In this way, ASBBR with immobilized biomass was shown to be efficient for organic removal at organic loading rates of up to 5.4gCODl(-1)d(-1) and to be more stable to organic loading variations for 12-h cycles. This reactor might be an alternative to intermittent systems as it possesses greater operational flexibility. It might also be an alternative to batch systems suspended with microorganisms since it eliminates both the uncertainties regarding granulation and the time necessary for biomass sedimentation, hence reducing the total cycle period.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Bacterias Anaerobias/crecimiento & desarrollo , Biomasa , Compuestos Orgánicos/metabolismo , Poliuretanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...